Multifunction Time relays C50 Series

1 Features

- Time range from 10 ms to 60 days, quartz precision
- Power supply UC 24-60 V, AC 230 V, UC 110 - 240 V
- Control inputs start, stop and reset
- Up to 15 time functions and test function (Button)
- Function selector, button, turning button, LCD
- Either standard relay or solid-state output UC 240 V, DC 24 V
- Remaining time display on LCD, relay state display with LED

- 11-pole plug-in
- Mounting with retaining clip or front mounting set

2 General description

The C52, C53, C55 and C56 are multifunctional timer relays with up to 15 functions and time ranges from 10 ms to 60 Days. They are developed for a voltage range of UC $24-240 \mathrm{~V}$ and are able to switch nominal current up to 8 A at a nominal voltage of 240 V . Solid-state outputs for $0.5 \mathrm{~A}, 10-250 \mathrm{~V}$ AC and $2 \mathrm{~A}, 24 \mathrm{~V}$ DC are available.

Technical specification is subject to change without previous notice

3 Order designation

Type	Functions and Specifications
C52/UC24V C52/AC110-120V C52/AC 230V	Functions E und A Output $1 \times \mathrm{U}$
$\begin{aligned} & \text { C53/UC24-60 } \\ & \text { C53/UC110-240V } \\ & \text { C53.3/UC24-60V } \\ & \text { C53.3/UC110-240V } \\ & \text { C53.4/DC24V } \end{aligned}$	Functions T, A, F, E, H, W, Q, N, I, B, K Output $1 \times \mathrm{U}$ Solid-State Output, 0,5A Solid-State Output, 2A
$\begin{aligned} & \text { C55/UC24-60 } \\ & \text { C55/UC110-240V } \\ & \text { C55.3/UC24-60V } \\ & \text { C55.3/UC110-240V } \\ & \text { C55.4/DC24V } \end{aligned}$	Functions T, A, F, E, H, W, Q, N, I, P, V, U, G, B, K, M Output $2 \times \mathrm{U}$ Solid-State Output, 0,5A Solid-State Output, 2A
C56/UC24-60 C56/UC110-240V	```Functions T, A, F, E, H, W, Q, N, I, P, V, U, G, B, K, M Output \(1 \times \mathrm{U}, 1 \times \mathrm{S}\) for potential-free excitation```

Options:
$\mathrm{C} 5 * \mathrm{~L} /{ }^{* *} \mathrm{~V}$: \quad Time lapse begins from 0 to the adjusted time.

Accessories:

Socket
Retaining clip
Front mounting set Marking label Front cover

CS-11, C11A
HF-50
FZ-50L
PL-50/10
FA-50

4 Connection diagram

S = Start, St = Stop, R = Reset

C52, C53

C55

C53.4/DC24V

C55.3/UC...

C55.4/DC24V

C52, C53, C55

For the functions E, W, H, I, P, and B the terminal B1 can be connected with A1 and the device will start with the power supply.
Considering of precision reasons it is only recommended by using longer times.

Start up with bridge between 5 and 7. Considering of precision reasons it is only recommended by using longer times.

5 Block diagram C55

6 Specifications

If not specially mentioned, the specifications are for all types.

6.1 General data

6.1.1 Mechanical data

Case / Dimensions

Case material
Protection class
Weight
Fastening and connection
Shake consistency
Shock

6.1.2 Ambient conditions

Storage temperature

11-pole plug-in case with retaining clip (Option), with front mounting set (Option).

Noryl SE1, Lexan EXL 9330 (UL 94V-1)
IP40
80 g
Socket 11-pole (IEC 67-1-18a), (retaining clip or front mounting set)
IEC571
>> 20g
$-40-+85^{\circ} \mathrm{C}$

Operating temperature
Life cycle (MTBF) type.
Relative humidity
$-25-+60^{\circ} \mathrm{C}$
$>150000 \mathrm{~h} / 40^{\circ} \mathrm{C}$; Life cycle for contacts, see chapt. 6.3.
10-95\% (non-condensing).

6.2 Supply and excitation

6.2.1 Supply

	C52			C53			C55 und C56			Unit
Type / U ${ }_{\text {Bnom }}$	UC24V	$\begin{gathered} \hline \text { AC110 - } \\ \text { 120V } \end{gathered}$	AC230V	.4/DC24V	$\begin{aligned} & \text { UC24- } \\ & 60 \mathrm{~V} \end{aligned}$	$\begin{gathered} \text { UC110- } \\ \text { 240V } \end{gathered}$	4/DC24 V	$\begin{aligned} & \text { UC24- } \\ & 60 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { UC110- } \\ & 240 \mathrm{~V} \end{aligned}$	
Operating voltage U_{B}	19-30	97-133	$\begin{gathered} 196- \\ 265 \end{gathered}$	19-30	19-75	88-265	19-30	19-75	88-265	V
Current consumption (type)	35	35	35	25	80-60	25-15	20	80-55	15-8	mA
Inrush current	$3 / 100 \mu \mathrm{~s}$	=	=	=	=	=	=	=	=	A
Power failure safety: -Supply -Control	≥ 4	$\begin{aligned} & \geq 25 \\ & \geq 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \geq 25 \\ & \geq 10 \end{aligned}$	$\begin{aligned} & \geq 10 \\ & \geq 10 \end{aligned}$	$\begin{aligned} & \geq 30 \\ & \geq 70 \\ & \hline \end{aligned}$	$\begin{aligned} & \geq 30 \\ & \geq 10 \\ & \hline \end{aligned}$	$\begin{gathered} \geq 8 \\ \geq 10 \\ \hline \end{gathered}$	$\begin{aligned} & \geq 20 \\ & \geq 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \geq 20 \\ & \geq 10 \\ & \hline \end{aligned}$	ms ms
Net frequency	48-400	48-62	50	-	48-400	48-400	-	48-400	48-400	Hz

Max. energy of parallel charge (all types): $2,5 \mathrm{kV} / 50 \mathrm{mWs} / 2,5 \mathrm{~Hz}$

6.2.2 Excitation, Stop und Reset

The Stop-Input (Y 1) S 1 is static, which means; active as long excitation.
The Reset-Input (Y2) S2 is dynamic, which means; react only on a rising flank (\uparrow)
At the functions U - and V : $\mathrm{S} 1(\mathrm{Y} 1)$ and $\mathrm{S} 2(\mathrm{Y} 2)$ is static, $\mathrm{P}(\mathrm{B} 1)$ is dynamic (\uparrow).

	C52			C53			C55			Unit
Type / U Bnom	UC24V	$\begin{gathered} \text { AC110 - } \\ \text { 120V } \end{gathered}$	AC230V	.4/DC24V	$\begin{gathered} \text { UC24 - } \\ 60 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { UC110- } \\ & 240 \mathrm{~V} \end{aligned}$.4/DC24V	$\begin{aligned} & \text { UC24- } \\ & 60 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { UC110- } \\ & 240 \mathrm{~V} \end{aligned}$	
Input voltage range	19-30	97-133	$\begin{gathered} 196- \\ 265 \end{gathered}$	19-30	19-75	88-265	19-30	19-75	88-265	V
Input current (type)	3.5	2.5	2.5 mA	5	2,5-6	1.5-5	5.5	1.5-6.3	1-4.2	mA
Input voltage										
-off -on-	$\begin{gathered} \leq 5 \\ \geq 14 \end{gathered}$	$\begin{aligned} & \leq 25 \\ & \geq 65 \end{aligned}$	$\begin{aligned} & \leq 175 \\ & \geq 160 \end{aligned}$	$\begin{gathered} \leq 5 \\ \geq 10 \end{gathered}$	$\begin{gathered} \leq 6 \\ \geq 11 \\ \hline \end{gathered}$	$\begin{aligned} & \leq 40 \\ & \geq 50 \end{aligned}$	$\begin{gathered} \leq 5 \\ \geq 10 \end{gathered}$	$\begin{gathered} \leq 6 \\ \geq 11 \\ \hline \end{gathered}$	$\begin{aligned} & \leq 40 \\ & \geq 50 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Rest current	≤ 1.25	≤ 1	≤ 1	≤ 1	-	-	≤ 1	≤ 1.5	≤ 1	mA

C56 (Potential free excitation)	
Control voltage	ca. 10 V
Current in the control circuit	$\leq 4 \mathrm{~mA}$
Input resistance	$2.2 \mathrm{k} \Omega$
Tolerated voltage drop in control circuit	$\leq 3 \mathrm{~V}$
Rest current	$\leq 1.8 \mathrm{~mA}$
Overlayed alternating voltage	$\leq 4 \mathrm{~V} 50 \mathrm{~Hz}$
Over voltage	DC 500 V für 1 ms
Transient protection	$1 \mathrm{kV} 50 \mu \mathrm{~s}$
Couple capacity to the power line 230 V 50 Hz	$\leq 10 \mathrm{nF}$

6.3 Outputs

6.3.1 Relay outputs

Type	C52, C53	C55, C56
Contact output	$1 \times \mathrm{AgNi}$	$\mathrm{C} 55: 2 \times \mathrm{U} \quad \mathrm{AgNi}$ $\mathrm{C} 56: 1 \times \mathrm{U}+1 \times \mathrm{S} \mathrm{AgNi}$
Switching voltage	$(12)-250 \mathrm{~V}$	$(12)-250 \mathrm{~V}$
Switching current	$\leq 8 \mathrm{~A}$	$\leq 5 \mathrm{~A}$
Sum current	--	$\leq 10 \mathrm{~A}$
Switching power	$2000 \mathrm{VA} / \leq 200 \mathrm{~W}$	$1250 \mathrm{VA} / \leq 200 \mathrm{~W}$
Recommended minimal charge	$24 \mathrm{~V} \mathrm{10mA}$	$12 \mathrm{~V} \mathrm{10mA}$
Life cycle electrical AC1		
mechanical	1×10^{5} cycles 3×10^{7} cycles	1×10^{5} cycles 5×10^{6} cycles

6.3.2 Short-circuit proof solid-state outputs

Option	$.3 / \ldots$	$.4 / \ldots$
Switching voltage	UC $10-265 \mathrm{~V}$	DC $19-30 \mathrm{~V}$
Switching current	0.5 A	2 A
Short-circuit current (Imax)	$6 \mathrm{~A} / 2 \mu \mathrm{~s}$	$40 \mathrm{~A} / 150 \mu \mathrm{~s}$
Galv. separation / Test voltage	2 kV	no galvanic separation
Voltage drop	$\leq 3 \mathrm{~V}$	$\leq 100 \mathrm{mV}$
Rest current	$\leq 100 \mu \mathrm{~A}$	$\leq 150 \mu \mathrm{~A}$

The option .3/... is equipped with a short-circuit feedback. If the solid-state is over charged, on the display of C53 or C55, "SC" will appear for Short Circuit.

6.4 Time response

6.4.1 Time ranges

Type	Time range	Adjustable time	Resolution
C52	Minutes	$0.1 \mathrm{~s}-59 \mathrm{~min} 59.9 \mathrm{~s}$	0.1 s
C53	Minutes	$0.1 \mathrm{~s}-59 \mathrm{~min} 59.9 \mathrm{~s}$	0.1 s
	Hours	$0.1 \mathrm{~min}-59 \mathrm{~h} 59.9 \mathrm{~min}$	0.1 min
C55	Seconds	$0.01 \mathrm{~s}-59.999 \mathrm{~s}$	0.001 s
	Minutes	$0.1 \mathrm{~s}-59 \mathrm{~min} 59.9 \mathrm{~s}$	0.1 s
	Hours	0.1 min 59 h 59.9 min	0.1 min
	Days	$0.1 \mathrm{~h}-59$ day 23.9 h	0.1 h

At Double-Time functions, it's possible to adjust them independently.

6.4.2 Reaction times und accuracy

Time accuracy
Repeating accuracy
On-Delay
Temperature stability
Minimal excitation time
Reset time
$\pm 0.05 \%$
$\pm 0.05 \%$ or $\pm 10 \mathrm{~ms}$
DC: $40-50 \mathrm{~ms}$, AC: $50-60 \mathrm{~ms}$
$\pm 0.01 \%$ over the whole temperature range
DC: $30 \mathrm{~ms}, \mathrm{AC}: 40 \mathrm{~ms}$
$\leq 200 \mathrm{~ms}$

6.5 Functions

Reset and Stop

The C55 has additionally a Stop and Reset input.
Reset: Only effective when time process is running. Dynamic input: triggered with a rising flank while process, the time is resetting and will restart

Stop: Only effective when time process is running. Static input: the time process will be stopped.

A: OFF Delayed

C52/ C53/C55

* Darstellung der Funktion auf dem Gerätedisplay (Bei Zeitablauf blinken entsprechende Punkte).

B: Blinker

(S)

E: ON Delayed

Un		

F: ON and OFF delayed

| | |
| :--- | :--- | :--- |

G, H: On delay single shot

	C55 By triggering (S), the output R is switched on for a pulse length of t_{2} after expiry of set time t_{1}. The output impulse stops with the falling edge (S).
	C55 By triggering (S) , the output R is switched on for a pulse length of t_{2} after expiry of set time t_{1}. The output impulse is independent of the duration of the trigger.

K, W: Pulse shaping

M, \mathbf{N} : One shot falling edge

Q: One shot leading and trailing edge

$\square \square \square \square \square \square$

C53, C55
By triggering(S) , the output R is switched ON and OFF alternatively according to the set times t_{1} (ON-time) and t_{2} (OFF-time).
The output pulse will be stopped at the same time as (S).

P: Impulse generator, interval start

U, V: Monitoring functions

Only for C55 and C56.
Both functions are monitoring the sequence of impulses on its temporal distance. With the help of these functions, motor speeds or motion sequences can be supervised on its minimal speed.

U : Pulse sequence monitoring (Cycle)

$\underbrace{\substack{\text { Impulstigge } \\ \text { Drenzanl }}}$	
4	Cycle: The output becomes active with a first as a properly recognized period duration.
Without Alarm delay:	The supervision clearance without approach bridging and without alarm delay occurs over S1 (Y1, terminal 7)
R t_{p} t_{p}	The supervision clearance with approach bridging and alarm delay occurs over S2 (Y2, terminal 5)
With Alarm delay:	With approach bridging $\mathrm{t}_{\mathrm{A}}(\mathrm{t} 1)$, the output remains active during the time regardless of the impulse result. If an error is recognized, the output becomes inactive after the time t 1 .
	After the monitoring clearance the period duration of an impulse result is supervised in P (B 1 , terminal 6): If period duration of signal $P>t_{P}\left(t_{2}\right)$ then the output becomes inactive. The output remains inactive for $t_{\text {amin }} \geq 50 \mathrm{~ms}$. With a next as properly recognized impulse result (cycle) the output is activated again. If both start inputs $\mathrm{S} 1, \mathrm{~S} 2(\mathrm{Y} 1, \mathrm{Y} 2)$ are activated at the same time, it corresponds on a function reset and the output is switched inactive. If necessary the approach bridging is restarted afterwards.

V: Pulse sequence monitoring (Event)

$\square \square \square$

Event: The output becomes active with the first pulse.
The supervision clearance without approach bridging and without alarm delay occurs over S1 (Y1, terminal 7)
The supervision clearance with approach bridging and alarm delay occurs over S2 (Y2, terminal 5)
With approach bridging $\mathrm{t}_{\mathrm{A}}(\mathrm{t} 1)$, the output remains active during the time regardless of the impulse result. If an error is recognized, the output becomes inactive after the time t1.
After the monitoring clearance the period duration of an impulse result is supervised in P (B1, terminal 6): If period duration of signal $P>t_{P}\left(t_{2}\right)$ then the output becomes inactive. The output remains inactive for $t_{\text {amin }} \geq 50 \mathrm{~ms}$. With a next as properly recognized impulse result (cycle) the output is activated again.
If both start inputs $\mathrm{S} 1, \mathrm{~S} 2(\mathrm{Y} 1, \mathrm{Y} 2)$ are activated at the same time, it corresponds on a function reset and the output is switched inactive. If necessary the approach bridging is restarted afterwards.

Adjusting the approach bridging:

U-Function
Impulstolge (Drehzahl)

T: Test

Button T | C52, C53, C55 |
| :--- |
| With this button the output state can be changed. |
| After turning on the operating voltage the output is inactive first. |
| If switched from any function to the test function, the device state |
| is frozen. I.e. an actual time lapse will be stopped. |
| If a new function is selected from the test function, the device will |
| be reset. If the previous function is selected again, the previous |
| functional status is continued. |

7 Handling

1 Rotary switch for adjusting the function. The corresponding letter for the function will appear in the right window beside the button, the functions on the C52 are printed around the turning button on the front plate.
2 Rotary switch for time adjustment
3 Button for Info and time adjustment
4 Yellow LED for output state
5 LCD advertising for the time, functions, state of the device and system information's
6 Marking label

7.1 Description of LCD Display

Time advertising ($\mathrm{t}, \mathrm{t} 1, \mathrm{t} 2, \mathrm{tA}$, und tP) depends on state of operating
R (Output) (Start)

In Resting state the target time $t / t_{1} / t_{A}$ is advertised. The time double-points do not blink.
In Active state, excitation with or without "Time stop" (Y1), the Rest time (optional run time) of the running process will be shown. The belonging time double-points are blinking.

In Info state the adjusted time will be indicated after the choice of t 1 , or $\mathrm{t} 1 / \mathrm{t}$ 2. The belonging time double-points are blinking. With every other button stroke the time indication switch from $t_{1}\left(t_{A}\right)$ to $t_{2}\left(t_{p}\right)$ and back again, provided that a 2-times function is adjusted.

In Adjustment state the chosen time is indicated. The figure group, which can be adjusted, and the belonging double-points are blinking.

7.2 Function setting

The function setting occurs over a 16 -figure rotary switch.
On the devices C52 and C53, not all positions are occupied.
If the counter is set on a not occupied position, the announcement "noF" (no function) appears. The output remains switched off in any case.

A new function is taken over with an internal device reset, 1 second after the last rotation of the rotary function switch.

7.2.1 Time and monitoring function

If a new function is selected during the time setting, the new time will be stored first, before the device will reset. If no time was changed in the set state, the set state will leave after 1 second with the takeover of the new function.

7.2.2 Correspondence between function symbol and function diagram

7.3 Time adjustment

7.3.1 Composition of the time structure of the $\mathbf{C} 50$ series

Time	t_{1}, t_{2}, t_{A} or t_{P}											
Time range	Days			Hours			Minutes			Seconds		
Figure groups	day	h	1/10 h	h	min	1/10 min	min	S	1/10 s	s	10 ms	1 ms

Every time (t, t_{1}, t_{2}, t_{A} und t_{P}) is divided into maximum 4 time areas: Days, hours, minutes and seconds. Only the time constellation which is visible on the display is valid.
E.G., is not possible: 3 days 5 sec .

Every time area is divided into 3 figure groups:
Over the rotary switch the time areas and their figure groups can be selected after which then the values can be adjusted.
At double-time functions both times can be adjusted absolutely independent of each other.

7.3.2 Adjustment of the time

7.4 Error messages

The devices dispose of an own supervision.
In case of an error the following error messages are indicated:

Indication	Error	Cause	Output	To do
SC	Short circuit	The output is overloaded (only C5x. 3 with solid-state output).	Off	Reduce charge or remove failure
noF	No function	The rotary switch for the function choice is not in a proper position (only C52, C53).	Off	Turning the rotary switch to the right position
$\begin{aligned} & \hline 02 \\ & \text { Err } \end{aligned}$	EEPROM Warning	The saved adjustments are not consistent.	Function as adjusted	Re-adjust the device. If error occurs again, replacing of the device
$\begin{aligned} & 03 \\ & \text { Err } \end{aligned}$	EEPROM Error	The saved adjustments can't be read.	Off	Re-adjust the device. If error occurs again, replacing of the device
$\begin{aligned} & 04 \\ & \text { Err } \end{aligned}$	RAM Error	The data's in the RAM are not consistent.	Off	Re-adjust the device. If error occurs again, replacing of the device
$\begin{aligned} & 08 \\ & \text { Err } \end{aligned}$	Type decoding Error	The internal type coding is defect	Off	Replacing of the device
$\begin{aligned} & 09 \\ & \text { Err } \end{aligned}$	Watchdog error	The device was reset by the internal watchdog.	Off	Re-start the device. If error occurs again, replacing of the device

