

Part no.
M22-K01
Powering Business Worldwide
Article no. 216378
Catalog No. M22-K010

Delivery programme

Product range
Basic function
Standard/Approval
Construction size
Single unit/Complete unit
Basic function accessories
Connection technique

Fixing

Contacts
N/C = Normally closed

Notes

Contact sequence

RMQ-Titan (drilling dimensions 22.5 mm)
Accessories
UL/CSA, IEC
NZM1/2/3/4
Element
Contact elements
Screw terminals
Front fixing
$1 \mathrm{NC} \ominus$
Θ = safety function, by positive opening to IEC/EN 60947-5-1
$\overbrace{0}$

2

Contact travel diagram, stroke in connection with front element

Configuration

Degree of Protection

Connection to SmartWire-DT
Connection type
Description of HIA trip-indicating auxiliary contact

Description standard auxiliary contact HIN

For use with

IP20
IEC/EN 60529

no

Single contact
General trip indication ' + ', when tripped by shunt release, overload release, shortcircuit release or by the residual-current release due to residual-current. Can be used with NZM1, 2, 3 circuit-breaker: a trip-indicating auxiliary contact can be clipped into the circuit-breaker.
Can be used with NZM4 circuit-breaker: up to two standard auxiliary contacts can be clipped into the circuit-breaker.
Any combinations of the auxiliary contact types are possible.
Not in combination with switch-disconnector PN...
Marking on switch: HIA
Labeling in FI-Block: HIAFI.
If the trip-indicating auxiliary switch in the fault current block is used, the NC contacts operates as a N/O contact and the NC contact operates as an N/O contact.

Switching with the main contacts Used for indicating and interlocking tasks.
Can be used with NZM1 circuit-breaker: a standard auxiliary contact can be clipped into the circuit-breaker.
Can be used with NZM2 size circuit-breaker: a standard auxiliary contact can be clipped into the circuit-breaker.
Can be used with NZM3, 4 circuit-breaker: up to three standard auxiliary contacts can be clipped into the circuit-breaker.
Any combinations of the auxiliary contact types are possible.
Marking on switch: HIN.
On combination with remote operator NZM-XR... the right mounting location of standard auxiliary contact HIN can be fitted only with individual contacts.

NZM1(-4), 2(-4), 3(-4), 4(-4)
PN1(-4), 2(-4), 3(-4)
$N(S) 1(-4), 2(-4), 3(-4), 4(-4)$

Technical data

General

Standards			IEC/EN 60947 VDE 0660
Lifespan, mechanical	Operations	$\times 10^{6}$	> 5
Operating frequency	Operations/h		Ξ_{3600}
Actuating force		n	Ξ_{5}
Operating torque (screw terminals)		Nm	$\coprod_{0.8}$
Degree of Protection			IP20 IEC/EN 60529
Climatic proofing			Damp heat, co

		${ }^{\circ} \mathrm{C}$	Damp heat, cyclic, to IEC 60068-2-30
Ambient temperature			
Open		${ }^{\circ} \mathrm{C}$	$-25-+70$
Storage		${ }^{\circ} \mathrm{C}$	$-40-+80$
Mounting position			As required
Mechanical shock resistance		g	30 Shock duration 11 ms Sinusoidal according to IEC 60068-2-27
Terminal capacities		mm^{2}	
Solid		mm^{2}	0.75-2.5
Stranded		mm^{2}	0.5-2.5
Flexible with ferrule		mm^{2}	0.5-1.5
Contacts			
Rated impulse withstand voltage	$\mathrm{U}_{\text {imp }}$	V AC	6000
Rated insulation voltage	U_{i}	V	500
Overvoltage category/pollution degree			III/3
Control circuit reliability			
at $24 \mathrm{VDC} / 5 \mathrm{~mA}$	HF_{F}	$\begin{aligned} & \text { Fault } \\ & \text { probability }\end{aligned}<10^{-7}$ (i.e. 1 failure to 10^{7} operations)	
at $5 \mathrm{VDC} / 1 \mathrm{~mA}$	HF_{F}	Fault probability	$<5 \times 10^{-6}$ (i.e. 1 failure in 5×10^{6} operations)
Max. short-circuit protective device			
Fuseless		Type	PKZMO-10/FAZ-B6/1
Fuse	$\mathrm{gG} / \mathrm{gL}$	A	10
Switching capacity			
Rated operational current	$I_{\text {e }}$	A	
AC-15			
115 V	$I_{\text {e }}$	A	6
220 V 230 V 240 V	I_{e}	A	6
380 V 400 V 415 V	I_{e}	A	4
500 V	I_{e}	A	2
DC-13			
24 V	I_{e}	A	3
42 V	I_{e}	A	1.7
60 V	$I_{\text {e }}$	A	1.2
110 V	I_{e}	A	0.6
220 V	I_{e}	A	0.3
Lifespan, electrical			
AC-15			
$230 \mathrm{~V} / 0.5 \mathrm{~A}$	Operations	$\times 10^{6}$	1.6
$230 \mathrm{~V} / 1.0 \mathrm{~A}$	Operations	$\times 10^{6}$	1
$230 \mathrm{~V} / 3.0 \mathrm{~A}$	Operations	$\times 10^{6}$	0.7
DV-13			
$12 \mathrm{~V} / 2.8 \mathrm{~A}$	Operations	$\times 10^{6}$	1.2
Auxiliary contacts			
Terminal capacities		mm^{2}	
Solid or flexible conductor, with ferrule		mm^{2}	$\begin{aligned} & 1 \times(0,75-2,5) \\ & 2 \times(0,75-2,5) \end{aligned}$
UL/CSA			
Rated operational current	$I_{\text {e }}$	A	$\begin{aligned} & 5 \mathrm{~A}-600 \mathrm{~V} \text { AC } \\ & 1 \mathrm{~A}-250 \mathrm{~V} D \mathrm{C} \end{aligned}$

Indoor and protected outdoor installation

Data for design verification according to IEC/EN 61439

Technical data for design verification

Rated operational current for specified heat dissipation	I_{n}	A	6
Heat dissipation per pole, current-dependent	$\mathrm{P}_{\text {vid }}$	W	0.11
Equipment heat dissipation, current-dependent	$\mathrm{P}_{\text {vid }}$	W	0
Static heat dissipation, non-current-dependent	P_{vs}	W	0
Heat dissipation capacity	$\mathrm{P}_{\text {diss }}$	W	0
IEC/EN 61439 design verification			
10.2 Strength of materials and parts			
10.2.2 Corrosion resistance			Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures			Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal heat			Meets the product standard's requirements.
10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects			Meets the product standard's requirements.
10.2.4 Resistance to ultra-violet (UV) radiation			Meets the product standard's requirements.
10.2.5 Lifting			Does not apply, since the entire switchgear needs to be evaluated.
10.2.6 Mechanical impact			Does not apply, since the entire switchgear needs to be evaluated.
10.2.7 Inscriptions			Meets the product standard's requirements.
10.3 Degree of protection of ASSEMBLIES			Does not apply, since the entire switchgear needs to be evaluated.
10.4 Clearances and creepage distances			Meets the product standard's requirements.
10.5 Protection against electric shock			Does not apply, since the entire switchgear needs to be evaluated.
10.6 Incorporation of switching devices and components			Does not apply, since the entire switchgear needs to be evaluated.
10.7 Internal electrical circuits and connections			Is the panel builder's responsibility.
10.8 Connections for external conductors			Is the panel builder's responsibility.
10.9 Insulation properties			
10.9.2 Power-frequency electric strength			Is the panel builder's responsibility.
10.9.3 Impulse withstand voltage			Is the panel builder's responsibility.
10.9.4 Testing of enclosures made of insulating material			Is the panel builder's responsibility.
10.10 Temperature rise			The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.
10.11 Short-circuit rating			Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.12 Electromagnetic compatibility			Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.13 Mechanical function			The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

Technical data ETIM 5.0

Low-voltage industrial components (EG000017) / Auxiliary contact block (EC000041)
Electric engineering, automation, process control engineering / Low-voltage switch technology / Component for low-voltage switching technology / Auxiliary switch block (ecl@ss8-27-37-13-02 [AKN342009])

Number of contacts as change-over contact
Number of contacts as normally open contact
0

Number of contacts as normally closed contact
Rated operation current le at AC-15, 230 V
Type of electric connection
Mounting method
Font fastening

Approvals

Product Standards
UL File No
UL Category Control No.
CSA File No.
CSA Class No.
North America Certification
Degree of Protection

IEC/EN 60947-5; UL 508; CSA-C22.2 No. 14-05; CSA-C22.2 No. 94-91; CE marking E29184

NKCR
012528
3211-03
UL listed, CSA certified
UL/CSA Type: -

Pushbutton with M22-(C)K..
Pushbutton with M22-(C) LED... + M22-XLED...

Additional product information (links)

IL04716002Z (AWA1160-1745) RMO-Titan System

IL04716002Z (AWA1160-1745) RMQ-Titan ftp://ftp.moeller.net/DOCUMENTATION/AWA_INSTRUCTIONS/LL04716002Z2013_08.pdf
System

